Variational and phase response analysis for limit cycles with hard boundaries, with applications to neuromechanical control problems.
Journal Information
Full Title: Biol Cybern
Abbreviation: Biol Cybern
Country: Unknown
Publisher: Unknown
Language: N/A
Publication Details
Related Papers from Same Journal
Transparency Score
Transparency Indicators
Click on green indicators to view evidence textCore Indicators
"in the table \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s_p$$\end{document} s p \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$j_p$$\end{document} j p and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {j}}_p$$\end{document} j p denote the saltation matrix the jump matrix and the time-reversed jump matrix at some boundary crossing point \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textbf{x}_p=\textbf{x}(t_p)$$\end{document} x p = x ( t p ) respectively \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f_p^-=\lim _{\textbf{x}\rightarrow \textbf{x}_p^-}f(\textbf{x})$$\end{document} f p - = lim x -> x p - f ( x ) and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f_p^+=\lim _{\textbf{x}\rightarrow \textbf{x}_p^+}f(\textbf{x})$$\end{document} f p + = lim x -> x p + f ( x ) denote the vector fields of the nonsmooth system just before and just after the crossing at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textbf{x}_p$$\end{document} x p i denotes the identity matrix \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n_p$$\end{document} n p denotes the unit normal vector of the crossing boundary at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textbf{x}_p$$\end{document} x p simulation codes written in matlab are available at https://github com/yangyang-wang/aplysiamodel ."
"This work was supported in part by National Institutes of Health BRAIN Initiative grant RF1 NS118606-01 to HJC and PJT, by NSF grant DMS-2052109 to PJT, by NSF grant IOS-1754869 to HJC, by NIH/NIDA R01DA057767 to YW, as part of the NSF/NIH/DOE /ANR/BMBF/BSF/NICT/AEI/ISCIII Collaborative Research in Computational Neuroscience Program and by NSF grant DBI 2015317 to HJC, as part of the NSF/CIHR/DFG/FRQ/UKRI-MRC Next Generation Networks for Neuroscience Program. This work was supported in part by the Oberlin College Department of Mathematics. We thank Zhuojun Yu for providing a critical reading of the manuscript. We thank the anonymous reviewer for suggesting an alternative way of deriving the infinitesimal shape response curve, which is now included in the “Appendix C.”"
Additional Indicators
Assessment Info
Tool: rtransparent
OST Version: N/A
Last Updated: Aug 05, 2025