Variational and phase response analysis for limit cycles with hard boundaries, with applications to neuromechanical control problems.

Publication Year: 2022

DOI:
10.1007/s00422-022-00951-8

PMCID:
PMC9691512

PMID:
36396795

Journal Information

Full Title: Biol Cybern

Abbreviation: Biol Cybern

Country: Unknown

Publisher: Unknown

Language: N/A

Publication Details

Subject Category: Physiology

Available in Europe PMC: Yes

Available in PMC: Yes

PDF Available: No

Transparency Score
3/6
50.0% Transparent
Transparency Indicators
Click on green indicators to view evidence text
Core Indicators
Data Sharing
Evidence found in paper:

"in the table \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s_p$$\end{document} s p \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$j_p$$\end{document} j p and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {j}}_p$$\end{document} j p denote the saltation matrix the jump matrix and the time-reversed jump matrix at some boundary crossing point \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textbf{x}_p=\textbf{x}(t_p)$$\end{document} x p = x ( t p ) respectively \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f_p^-=\lim _{\textbf{x}\rightarrow \textbf{x}_p^-}f(\textbf{x})$$\end{document} f p - = lim x -> x p - f ( x ) and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f_p^+=\lim _{\textbf{x}\rightarrow \textbf{x}_p^+}f(\textbf{x})$$\end{document} f p + = lim x -> x p + f ( x ) denote the vector fields of the nonsmooth system just before and just after the crossing at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textbf{x}_p$$\end{document} x p i denotes the identity matrix \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n_p$$\end{document} n p denotes the unit normal vector of the crossing boundary at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textbf{x}_p$$\end{document} x p simulation codes written in matlab are available at https://github com/yangyang-wang/aplysiamodel ."

COI Disclosure
Evidence found in paper:

"This work was supported in part by National Institutes of Health BRAIN Initiative grant RF1 NS118606-01 to HJC and PJT, by NSF grant DMS-2052109 to PJT, by NSF grant IOS-1754869 to HJC, by NIH/NIDA R01DA057767 to YW, as part of the NSF/NIH/DOE /ANR/BMBF/BSF/NICT/AEI/ISCIII Collaborative Research in Computational Neuroscience Program and by NSF grant DBI 2015317 to HJC, as part of the NSF/CIHR/DFG/FRQ/UKRI-MRC Next Generation Networks for Neuroscience Program. This work was supported in part by the Oberlin College Department of Mathematics. We thank Zhuojun Yu for providing a critical reading of the manuscript. We thank the anonymous reviewer for suggesting an alternative way of deriving the infinitesimal shape response curve, which is now included in the “Appendix C.”"

Protocol Registration
Open Access
Paper is freely available to read
Additional Indicators
Replication
Novelty Statement
Assessment Info

Tool: rtransparent

OST Version: N/A

Last Updated: Aug 05, 2025