A comparative study of CNN-capsule-net, CNN-transformer encoder, and Traditional machine learning algorithms to classify epileptic seizure.
Journal Information
Full Title: BMC Med Inform Decis Mak
Abbreviation: BMC Med Inform Decis Mak
Country: Unknown
Publisher: Unknown
Language: N/A
Publication Details
Subject Category: Medical Informatics
Available in Europe PMC: Yes
Available in PMC: Yes
PDF Available: No
Related Papers from Same Journal
Transparency Score
Transparency Indicators
Click on green indicators to view evidence textCore Indicators
"availability of data and materials the datasets and code used during the current study are available at: https://github com/bioaiteam/a-comparative-study-of-cnn-capsule-net-cnn-transformer-encoder-and-traditional-machine-learning-al ."
"availability of data and materials the datasets and code used during the current study are available at: https://github com/bioaiteam/a-comparative-study-of-cnn-capsule-net-cnn-transformer-encoder-and-traditional-machine-learning-al ."
"Declarations Ethics approval and consent to participateNot applicable. Consent for publicationNot applicable. Competing interestsThe authors declare no competing interests. Competing interests The authors declare no competing interests."
"Funding This work was funded by Universidad Autonoma de Manizales as part of the project “Clasificación de los estadios del Alzheimer utilizando Imágenes de Resonancia Magnética Nuclear y datos clínicos a partir de técnicas de Deep Learning” with code 873-139, and also by the projects “CH-T1246: Oportunidades de Mercado para las Empresas de Tecnología-Compras Públicas de Algoritmos Responsables, Éticos y Transparentes”, ANID PIA/BASAL FB0002, and ANID/PIA/ANILLOS ACT210096."
Additional Indicators
Assessment Info
Tool: rtransparent
OST Version: N/A
Last Updated: Aug 05, 2025